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Abstract
A new method for finding the dynamical invariant for a general time-dependent
harmonic oscillator is proposed by making use of two linearly independent
solutions to the classical equation of motion. It is shown that the dynamical
invariant for different gauged Hamiltonians are connected by time-dependent
gauge transformations. Therefore, the representation whose bases are the
instantaneous eigenstates of the invariant operator is a good representation for
the quantum nonautonomous system. In this representation, the wavefunction
of the system is gauge covariant and thus any observable physical effect
is naturally independent of the choice of gauged Hamiltonians. The exact
even and odd coherent states for a time-dependent harmonic oscillator are
constructed in terms of these gauge covariant bases. The harmonic oscillator
with periodically varying frequency is treated as a demonstration of our general
approach.

PACS numbers: 03.65.−w, 03.65.Bz, 03.65.Ge

1. Introduction

It is well known that the harmonic oscillator (HO) is one of the most important and fundamental
objects in physics and mathematical physics. Therefore, it is worthwhile to study the problems
related to various generalizations of it [1, 2]. In particular, to include the surrounding influence
on a vibration, to simulate the coupling of the vibration with other degrees of freedom, or to
describe the quantum motion in a Paul trap [3], one should consider a time-dependentharmonic
oscillator (TDHO) with parameters changing in time. Therefore, over the past decade, much
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attention has been paid to obtain the exact solution of the Schrödinger equation for the TDHO.
Several techniques such as the evolution operator method [4], the path-integral method [5],
the gauge transformation method or algebraic dynamics [6] etc, have been developed to treat
these nonautonomous systems. Since Lewis and Riesenfeld [7] derived a simple relation
between the eigenstates of the dynamical invariant and the solutions of the Schrödinger
equation, the dynamical invariant method has been extensively employed to investigate various
quantum evolution problems of TDHO, e.g., time-dependent coherent states [8] and dynamical
squeezing [9] etc. Recently, several authors [9, 10] have constructed a dynamical invariant
operator with a complicated form for the TDHO in terms of special solutions with special
initial conditions of the classical linear dynamical equation.

As is well known that numerous classical Hamiltonians, which are generalized gauge
equivalent to each other, yield one common classical equation of motion [11]. To treat
these numerous quantum Hamiltonians corresponding to one classical equation of motion, an
energy operator method had been developed [12]. In this approach, one Hamiltonian among
the numerous ones was selected as the energy operator. However, energy representation is not
an appropriate representation for time-dependent systems since spontaneous transitions among
eigenstates of the chosen energy operator take place frequently. Furthermore, it is unclear
among so many Hamiltonians which one should serve as the energy operator. Recently, Yeon
et al [13] have treated the numerous Hamiltonians and the relevant Schrödinger equations
in the Hamiltonian representation. However, the relation of the exact solutions for different
gauged Hamiltonians is still lacking. In this paper, we show that the dynamical invariant
for a TDHO [14], constructed by making use of two linearly independent solutions to the
corresponding classical equation of motion, is naturally generalized gauge-covariant and thus
the solutions of Schrödinger equations for different gauged Hamiltonians are connected by
time-dependent gauge transformations. This is the main distinction of our present approach
from quantum canonical transformation methods [15–17], wherein non-unique canonical
momentum operators should be treated.

The paper is set out as follows. Section 2 provides a simple approach to construct
the dynamical invariant by making use of two arbitrary linearly independent solutions to
the classical equation of motion of TDHO. Using this method, we further construct another
dynamical invariant for another Hamiltonian describing the same classical dynamical equation
of motion as the former one in section 3. We show that the dynamical invariants for different
gauged Hamiltonians are really connected by time-dependent gauge transformations. The
gauge functions are only dependent on coordinate q and time parameter t. As a consequence,
the exact wavefunctions for TDHO in different gauges are generalized gauge-covariant. Some
special wavefunctions, e.g. the exact even and odd coherent states (EOCSs) for TDHO, are
introduced in this section. As their generalized gauge covariance the physical effects of
these states are also independent of the choice of the gauged Hamiltonians. An HO with
a periodically varying frequency is treated in section 4 as a demonstration of our general
approach. Like the distinction between the CS for TDHO [11, 14] and Gaulber CS for time-
independent HO, we show by a numerical method that the quantum statistical properties of
EOCSs for TDHO are obviously different from those of the usual EOCSs for time-independent
HO. The conclusions are drawn in the final section.

2. Constructing quantum exact solutions from the classical exact solutions

We consider the general TDHO with the following classical equation of motion

q̇cl −
Ż

Z(t)
q̇cl + [X(t)Z(t)]qcl = 0 (1)
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which describes a classical harmonic oscillator with time-dependent massm(t) = Z−1(t) and
frequency ω(t) = √

X(t)Z(t). If Z(t) ≡ 1 and the frequency is a periodic function of time t,
equation (1) reduces to the famous Hill equation. In recent years, a class of solvable Hill
equations with two parameters which are continuous periodic functions has been found [18].
For two arbitrary linearly independent solutions x1(t) and x2(t) of equation (1), we can easily
prove the following identity

d

dt
{Z−1(t)[x1(t)ẋ2(t)− x2(t)ẋ1(t)]} = 0.

Letting

α(t) = ln[x1(t)x2(t)] β(t) = α̇

2Z(t)
γ = Z−1(t)

2
[x1(t)ẋ2(t)− x2(t)ẋ1(t)] = const

we can obtain

β̇ + Z(t)β2(t) +X(t) + Z(t)γ 2e−2α(t) = 0 (2)

which will be used in the following to construct dynamical invariants.
The Lagrangian L(q, q̇, t) and classical Hamiltonian H(q, p, t) corresponding to the

equation of motion (1) assume the following forms:

L(q, q̇, t) = 1
2Z

−1(t)q̇2 − 1
2X(t)q

2 H(q, p, t) = 1
2 [Z(t)p2 + X(t)q2] (3)

where q and p are classical canonical coordinate and momentum. The corresponding quantum
Hamiltonian reads

Ĥ (q̂, p̂, t) = 1
2 [Z(t)p̂2 + X(t)q̂2]. (4)

To obtain the solution of the Schrödinger equation (h̄ = 1)

i
∂

∂t
|ψ(t)〉 = Ĥ (q̂, p̂, t)|ψ(t)〉 (5)

corresponding to the above Hamiltonian (4), we first construct the dynamical invariant operator
Î (q̂, p̂, t) which satisfies the conditions

Î †(q̂, p̂, t) = Î (q̂, p̂, t)
∂Î (q̂, p̂, t)

∂t
+ i[Ĥ (q̂, p̂, t), Î (q̂, p̂, t)] = 0. (6)

Using algebraic dynamical method [6], the dynamical invariant operator Î (q̂, p̂, t)

corresponding to the Hamiltonian (4) can be obtained as follows:

Î (q̂, p̂, t) = 1
2

{
eα(t)(p̂ − β(t)q̂)2 − γ 2e−α(t)q̂2

} = Û(t)Î 0(q̂, p̂)Û
†(t) (7)

where

Î 0(q̂, p̂) = 1
2 [p̂2 − γ 2q̂2] Û(t) = e

i
2β(t)q̂

2
e− iα(t)

4 (p̂q̂+q̂p̂).

The instantaneous eigenstates of Î (q̂, p̂, t) can be obtained by multiplying the eigenstates of
Î 0(q̂, p̂) by the unitary operator Û(t). The eigenvalue problem of Î 0(q̂, p̂) with real γ for
real x1(t) and x2(t) is equivalent to that of the Hamiltonian of the time-independent HO with
imaginary frequency ω = iγ , which was solved by Zhu and Klauder [19]. However, two
linearly independent complex conjugate solutions x (t) and x̄(t) of equation (1) can always
be selected. Here x̄(t) denotes the complex conjugation of x(t) = x1(t) + ix2(t). As a
consequence, γ = iκ with real κ and the eigenvalue problem of Î 0(q̂, p̂) is equivalent to that
of the Hamiltonian for a time-independent HO with a real frequency. Therefore, the dynamical
invariant operator Î (q̂, p̂, t) corresponding to the Hamiltonian (4) can be rewritten as

Î (q̂, p̂, t) = 1
2

{
eα(t)(p̂ − β(t)q̂)2 + κ2e−α(t)q̂2} = [

â†(t)â(t) + 1
2

]
κ (8)
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where the raising and lowering operators â(t) and â†(t) are defined as

â(t) = 1√
2κ

{
κe− α(t)

2 q̂ + ie
α(t)

2 [p̂ − β(t)q̂]
}

= Û(t)â0Û
†(t)

(9)
â†(t) = 1√

2κ

{
κe− α(t)

2 q̂ − ie
α(t)

2 [p̂ − β(t)q̂]
}

= Û(t)â
†
0Û

†(t)

with

â0 = 1√
2κ
(κq̂ + ip̂) â

†
0 = 1√

2κ
(κq̂ − ip̂) [â(t), â†(t)] = [â0, â

†
0] = 1. (10)

Solving the instantaneous eigenvalue problem of the dynamical invariant operator (8):
Î (q̂, p̂, t)|n, t〉 = λn|n, t〉, we have

λn = (
n + 1

2

)
κ (n = 0, 1, 2, . . .) |n, t〉 = Û (t)|n〉 (11)

where |n〉 = [
√
κ/(2nn!

√
π)]1/2e−ξ 2/2Hn(ξ) with ξ = √

κq , is the eigenstate of the operator
Î 0(q̂, p̂) = 1

2 [p̂2 + κ2q̂2] with the eigenvalue λn = (
n+ 1

2

)
κ . Following [6] and [7], we obtain

the general solution of Schrödinger equation (5) as follows

|ψ(t)〉 =
∞∑
n=0

Cn|ψn(t)〉 |ψn(t)〉 = eiθn(t)|n, t〉 Cn = 〈n, 0|ψ(0)〉 (12)

where the total phase or Lewis–Riesenfeld (LR) phase θn(t) reads

θn(t) =
∫ t

0

〈
n, t ′|i ∂

∂t ′
− Ĥ (q̂, p̂, t ′)|n, t ′

〉
dt ′ = −

(
n +

1

2

)
κ

∫ t

0

Z(t ′)
|x(t ′)|2 dt ′. (13)

It should be noted that the two linearly independent solutions of the classical equation of motion
can be chosen in different ways which yield different parameters α, β and γ . Therefore, one
may define different dynamical invariant representations for a common gauged Hamiltonian
[20].

3. Gauge covariance of the exact wavefunction for a general TDHO

As is well known, the Lagranians and Hamiltonians for a defined mechanical system are not
unique [12, 14] at the classical level. Indeed, for the general TDHO considered here, we can
easily find that the new Lagrangian L′(q, q̇, t) expressed by

L′(q, q̇, t) = 1

2

[
Z−1(t)q̇2 − X(t)q2

]
+

dG(q, t)

dt
= L(q, q̇, t) +

dG(q, t)

dt
(14)

also yields the classical equation (1). Here G (q, t) is an arbitrary function of coordinate q
and time t. The new Hamiltonian corresponding to the LagrangianL′(q, q̇, t) in equation (14)
reads

H ′(q, p, t) = 1

2
[Z(t)(p − ∂G(q, t)/∂q)2 +X(t)q2] − ∂G(q, t)

∂t
. (15)

It is easily seen that Hamiltonians (15) and (4) are generalized gauge equivalent as they
yield the common classical equation of motion (1). Following Yeon et al [13] the quantum
Hamiltonian and the relevant Schrödinger equation in new gauge read

Ĥ ′(q̂, p̂, t) = Ŵ(t)Ĥ (q̂, p̂, t)Ŵ †(t)− iŴ (t)
∂Ŵ †(t)
∂t

Ŵ (t) = eiG(q̂,t) (16)

and

i
∂

∂t
|φ(t)〉 = Ĥ ′(q̂, p̂, t)|φ(t)〉 (17)
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respectively. This means that there also exists a non-unique description of Lagranians and
Hamiltonians for a defined quantum system. However, the physical observable of this
dynamical system should be independent of the choice of the gauges. Differentiating from the
energy operator method [12], we now show this requirement is naturally satisfied by using the
gauge-covariant dynamical invariant. It is easy to prove that the dynamical invariant operator
corresponding to the Hamiltonian (16) can be written as

Î ′(q̂, p̂, t) = Ŵ (t)Î (q̂, p̂, t)Ŵ †(t) = [
(â′(t))†â′(t) + 1

2

]
κ (18)

where

â′(t) = 1√
2κ

{
κe− α(t)

2 q̂ + ie
α(t)

2 [p̂ − β(t)q̂ − ∂G(q̂, t)/∂q̂]
}

= Ŵ (t)â(t)Ŵ †(t)
(19)

(â′(t))† = 1√
2κ

{
κe− α(t)

2 q̂ − ie
α(t)

2 [p̂ − β(t)q̂ − ∂G(q̂, t)/∂q̂]
}

= Ŵ (t)â†(t)Ŵ †(t)

satisfy the commutation relation [â′(t), (â
′
(t))†] = 1. As a consequence, a simple relation

between the instantaneous eigensolutions of Î ′(q̂, p̂, t) : Î ′(q̂, p̂, t)|n, t〉′ = λ′
n|n, t〉′ and those

of Î (q̂, p̂, t) follows:

λ′
n = λn |n, t〉′ = Ŵ(t)|n, t〉 = Ŵ (t)Û (t)|n〉. (20)

Thus the general solutions of Schrödinger equation (17) read

|φ(t)〉 =
∞∑
n=0

Cn|φn(t)〉 |φn(t)〉 = eiθ ′
n(t)|n, t〉′. (21)

With the help of equations (13), (16) and (20), we can easily prove that

θ ′
n(t) =

∫ t

0

′〈n, τ |i ∂
∂τ

− Ĥ ′(q̂, p̂, τ )|n, τ 〉′ dτ

=
∫ t

0
〈n, τ |i ∂

∂τ
− Ĥ (q̂, p̂, τ )|n, τ 〉 dτ = θn(t). (22)

This means that the total phase is of gauge independence. At the same time, the gauge
covariant solutions to the Schrödinger equations in different gauges are related by gauge
transformations, i.e.

|φ(t)〉 = Ŵ(t)|ψ(t)〉. (23)

Coherent states for time-independent quantum system have been widely used in various
fields of physics. However, the coherent states for the time-dependent quantum system were
not constructed until the invariant theory was developed in 1980s, as for the time-dependent
quantum system the invariant rather than Hamiltonian representation is a good representation.
The exact CSs for a TDHO were usually constructed in terms of the instantaneous eigenstates of
the quadratic time-dependent invariants [8, 10, 14]. Recently, using the linear time-dependent
invariant, Man’ko et al [9] studied the dynamical effects of a time-dependent frequency on the
quantum statistical properties of the initial even and odd coherent states. In what follows we
introduce the exact EOCSs for the general TDHO in terms of the instantaneous eigenstates
of the quadratic time-dependent invariants. These states should be the solutions of the
nonstationary Schrödingerequation and thus they are connected by gauge functions in different
generalized gauges. The exact CSs for a general TDHO were defined as the instantaneous
eigenstates of the time-dependent annihilation (â(t) for the gauge with Hamiltonian (4)) [8, 10,
14], the exact EOCSs for a general TDHO with gauged Hamiltonian (4) thus can be similarly
defined as the instantaneous eigenstates of the operator â2(t) with the eigenvalue [z′(t)]2 i.e.

|z, t〉e = [cosh(|z|2)]−1/2
∞∑
n=0

z2n

√
(2n)!

|ψ2n(t)〉 (24)
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and

|z, t〉o = [sinh(|z|2)]−1/2
∞∑
n=0

z2n+1

√
(2n + 1)!

|ψ2n+1(t)〉 (25)

respectively, where z′(t) = ze2iθ0(t) with z = |z|eiϕ is a time-independent complex. We note
that the states |z, t〉e,o are exact solutions of Schrödinger equation (5). All auxiliary parameters
in the solutions are determined simply by a complex solution to the linear classical equation of
motion (1). It is also noted that the exact EOCSs (24), (25) reduce naturally to the usual EOCSs
for the time-independent HO Hamiltonian Ĥ (q̂, p̂) = 1

2

[
p̂2 + ω2

0q̂
2
]
, respectively. Indeed,

for the HO with a time-independent frequency ω0, two linearly independent solutions of
equation (1) can be expressed as x1(t) = eitω0 and x2(t) = e−itω0 . Thus,

α(t) = β(t) = 0 γ = iκ κ = ω0.

In this case, the time-dependent creation and annihilation operators (9) reduce naturally to the
usual creation and annihilation operators with a time-independent frequency ω0.

Similarly, the exact EOCSs for the TDHO in the new gauge described by the new
Hamiltonian (16) can also be defined as the eigenstates of the operator â′2(t)with the eigenvalue
[z′′(t)]2. With the help of equations (19) and (21), we have z′′(t) = z′(t) and

|z, t〉′e = [cosh(|z|2)]−1/2
∞∑
n=0

z2n

√
(2n)!

|φ2n(t)〉 = Ŵ (t)|z, t〉e (26)

|z, t〉′o = [sinh(|z|2)]−1/2
∞∑
n=0

z2n+1

√
(2n + 1)!

|φ2n+1(t)〉 = Ŵ (t)|z, t〉o. (27)

Therefore, the exact EOCSs for a TDHO defined in the gauge-covariant representation are
also gauge-covariant naturally.

4. Quantum statistical properties of the exact EOCSs for the TDHO with periodically
varying frequency

The exact EOCSs, as some special gauge-covariant wavefunctions, for a generalized TDHO
have been introduced in section 3. We now discuss their quantum statistical properties.
Without loss of generality, let us consider the typical time-dependent HO whose classical
equation of motion is as follows

..
qcl +ω2(t)qcl = 0 ω(t + T ) = ω(t) (28)

where T is the period of the frequency of the oscillator. If the frequency takes the form:
ω2(t) = a + 2q cos(2t), then equation (28) is nothing but the Mathieu equation which
describes the classical motion of a particle in a Paul trap [3]. The Mathieu equation has been
studied extensively and the solutions are expressed in terms of special functions [22]. In
practice, these functions are difficult to work with, not only analytically but also numerically.
In order to demonstrate our general approach developed in previous sections, we shall treat
the TDHO with periodically varying frequency:

ω2(t) = 1 +
ξ(1 − η2)

(1 + η cos[2t])2
(29)

where ξ = (a−1)3/[(a−1)2−q2] and η = −q/(a−1). It is a sufficiently good approximation
to the frequency ω2(t) = a + 2q cos(2t), which takes an important role in a Paul trap [3], if
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|q/(a − 1)| < 1 [23]. In particular, the exact compact solutions of equation (28) with the
frequency (29) had been found [24],

x1(t) =
√

1 + η cos[2t]

1 + η
exp

{
−i

√
1 + ξ

2
sin−1

[√
1 − η2 sin[2t]

1 + η cos[2t]

]}
(30)

and x2(t) = x̄1(t). So, inserting x1(t) and x2(t) into (2) and (13), we have

α(t) = ln

(
1 + η cos[2t]

1 + η

)
β(t) = −η sin[2t]

1 + η cos[2t]
γ = iκ

(31)
κ =

√
(1 − η)(1 + ξ)/(1 + η)

and

θn(t) = −
(
n +

1

2

)
κ

∫ t

0

(1 + η) dt ′

1 + η cos[2t ′]
= (n + 1/2)

√
1 + ξ arctan

{
(η − 1)√

1 − η2
tan[t]

}
. (32)

To examine the quantum statistical properties of the exact EOCSs for the TDHO, we
introduce the basic quadrature operators X̂1 and X̂2 as follows

X̂1 = â0 + â†0
2

=
√
κ

2
q̂ X̂2 = i(â†0 − â0)

2
=

√
1

2κ
p̂k (33)

where p̂k = Z−1∂Ĥ/∂p̂ = p̂ is the kinetic momentum operator in the gauge with
Hamiltonian (4). In the gauge with Hamiltonian (16) the kinetic momentum operator reads
p̂′
k = Z−1∂Ĥ ′/∂p̂ = Ŵ (t)p̂Ŵ †(t). As a consequence, we easily see that the expected

values of the basic quadrature operators X̂1, X̂2 are independent of the choice of the gauge
Hamiltonians. The commutation relation between them is also gauge invariant. Therefore, any
Hamiltonian can be chosen to discuss the quantum statistical properties of the even and odd
coherent states for a TDHO defined in the previous section. For the gauge with Hamiltonian
(4), the basic quadrature operators X̂1, X̂2 can be rewritten as

X̂1 = eα(t)/2

2
[â(t) + â†(t)] X̂2 = eα(t)/2

2

[(
β(t)

κ
− ie−α(t)

)
â(t) +

(
β(t)

κ
+ ie−α(t)

)
â†(t)

]
.

A state is said to be squeezed with respect to X̂j (j = 1, 2) if

Sj = (0X̂j )
2 < 1/4. (34)

With the help of equations (9), (24) and (25), we can easily calculate the fluctuations (0X̂1)
2

and (0X̂2)
2 in the exact EOCSs for TDHO with the frequency (29),

(0X̂1)
2
e = 1 + η cos[2t]

1 + η

[ |z|2
2
(cosϑ(t) + tanh |z|2) + 1/4

]
(35)

(0X̂2)
2
e = |z|2

[
P(t) cosϑ(t) +

β(t)

κ
sinϑ(t)

]
+ S(t)[|z|2 tanh |z|2 + 1/2] (36)

and

(0X̂1)
2
o = 1 + η cos[2t]

(1 + η)

[ |z|2
2
(cosϑ(t) + coth |z|2) + 1/4

]
(37)

(0X̂2)
2
o = |z|2

[
P(t) cos ϑ(t) +

β(t)

κ
sinϑ(t)

]
+ S(t)[|z|2 coth |z|2 + 1/2]. (38)
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Figure 1. Plots of Sj = (0X̂j )
2 (j = 1, 2) for the exact ECS (b) and the exact OCS (a) versus

time t for z = 0.8, ξ = 3 and η = 0 (i.e. in the case of the usual time-independent harmonic
oscillator). It is shown that for the exact ECS both the quadratures acquire squeezing in periodic
time intervals, while for the exact OCS the quadratures do not acquire squeezing at any time.

Here

P(t) = 1

2κ
[Q(t)β2(t)−Q−1(t)] S(t) = 1

2κ
[Q(t)β2(t) +Q−1(t)]

ϑ(t) = 2ϕ + 2
√

1 + ξ arctan

{
(η − 1)√

1 − η2
tan[t]

}
Q(t) = 1 + η cos(2t)√

(1 − η2)(1 + ξ)
.

It is not difficult to see that X̂1 may show squeezing for the exact ECS, but may not for the
exact OCS at t = 0. In figures 1 and 2, we have plotted the variation of the uncertainties
Sj = (0X̂j )

2 versus time t for the exact EOCSs with ξ = 3, |z| = 0.8, ϕ = 0 and η = 0,
±0.9, respectively. It is noted that for the time-dependent HO both quadratures acquire
squeezing in periodic time intervals for the ECS (figure 1(b)), but do not for the OCS
(figure 1(a)). We see also that the squeezing of the fluctuation of q (or pk) appears at the
expense of an increase of the fluctuation of pk (or q). For a TDHO (η = 0.9) we see that
EOCSs possess a time-dependent squeezing on X̂1 (figure 2(a)), while for another TDHO
(η = −0.9) neither ECS nor OCS acquire squeezing on X̂2 (figure 2(b)). These results imply



Gauge-covariant properties of a linear nonautonomous quantum system 443

0.00

0.25

0.50

0.75

1.00

1.25
S

1

(2a)

0 2 4 6
0

1

2

3

4

5

 ECS
 OCS

S
2

t

(2b)

Figure 2. Plots of Sj = (0X̂j )
2 (j = 1 or 2) for the exact EOCSs versus time t for z = 0.8, ξ = 3

and η = 0.9 (a) or η = −0.9 (b). Plot (a) shows the quadrature (0X̂1)
2 acquires squeezing in

periodic time intervals. Plot (b) shows that the quadrature (0X̂2)
2 does not acquire squeezing at

any time.

that the quantum properties of the exact EOCSs for TDHO are quite different from those of
the EOCSs for the time-independent HO.

5. Conclusions and discussions

The numerous Hamiltonians and relevant Schrödinger equations, corresponding to a common
classical equation of motion, have been treated in the dynamical invariant representation. The
new quadratic dynamical invariants for the general TDHO have been constructed by making
use of two arbitrary linearly independent solutions of a linear differential equation, which
describes the classical dynamics of the general TDHO. It is shown clearly that the invariants
for different gauged Hamiltonians are naturally connected by the gauge transformations.
Therefore, the instantaneous eigenstates of the dynamical invariants are gauge covariant. The
exact solutions of the Schrödinger equation expanded in terms of the instantaneous eigenstates
of the dynamical invariant are thus gauge covariant also. Any physical observable should be
independent of the choice of gauged Hamiltonians. This physical requirement, which is called
gauge independence of physical observables [25], can be best expressed in the dynamical
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invariant representation. As a demonstration of the general exact wavefunctions of the TDHO,
the gauge-covariant exact EOCSs for a general TDHO have been introduced in the invariant
representation. They are both the instantaneous eigenstates of the time-dependent annihilation
operator with a common time-dependent eigenvalue. The quantum statistical properties of
the exact EOCSs for the TDHO periodically varying frequency are discussed in detail by
introducing a pair of basic quadrature operators.

Finally, we again point out the differences between our present paper and that in [9], therein
the time-dependent EOCSs were defined as the instantaneous eigenstates of the square of the
linear time-dependent invariant Â(t)with changeless eigenvalues. Therefore, these states are in
practice the evolutions of the initial usual EOCSs |α〉e,o under the time-dependent Hamiltonian.
However, just as the exact CSs for the general TDHO were defined as the instantaneous
eigenstates of the time-dependent annihilation operator â(t), the exact EOCSs for the general
TDHO introduced in the present paper were defined as the instantaneous eigenstates of the
square of the time-dependent annihilation operator with time-dependent eigenvalues, as the
operator â(t) is not the dynamical invariant. Of course, |z, 0〉e,o is not equal to |α〉e,o in general.
Therefore, for a common time-dependent Hamiltonian the exact EOCSs we introduced here
and the time-dependentEOCSs discussed in [9] reveal different dynamical squeezing. We have
also shown that our exact EOCSs reduce to the usual EOCSs if the HO is time-independent.
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